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Abstract
Regional genetic differentiation of mitochondrial lineages occurs in migratory species 
with natal philopatry such as sea turtles. However, early juvenile dispersal represents 
a key opportunity for gene flow and colonization of new regions through founder 
events, making it an important yet under-studied life stage. To assess connectivity 
among sea turtle life stages and ocean basins, we sequenced mitochondrial DNA 
(mtDNA) fragments from 35 juveniles sampled in the Gulf of Mexico from the rarely 
observed dispersal stage across three species: green turtles (Chelonia mydas; n = 30), 
hawksbills (Eretmochelys imbricata; n = 3), and loggerheads (Caretta caretta; n = 2). We 
estimated green turtle rookery contributions using a many-to-many Bayesian mixed 
stock analysis that incorporated dispersal probabilities based on rookery size and 
transport via ocean currents. We assembled a gene tree including 709 distinct mtDNA 
control region haplotypes from the literature for all seven extant sea turtle species 
to assess gaps in life-stage data across ocean basins, as well as contextualize the 
lineages we sampled from dispersing juveniles. Our results indicate a high likelihood 
that green turtles sampled in the Gulf of Mexico originated from rookeries along 
the coast of Mexico, with smaller contributions from Costa Rica and Suriname. The 
gene tree analysis yielded species-level relationships consistent with those presented 
previously, while intra-species relationships between lineages and ocean basins 
differed, particularly within loggerhead and green turtle clades. Our results highlight 
the lack of genetic data from juvenile sea turtles, especially the early dispersal stage, 
and the potential for these data to answer broader questions of connectivity and 
diversification across species and lineages.
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1  |  INTRODUC TION

Juvenile dispersal distributes offspring across habitats, which may 
reduce predation or competition for limited resources (Forero 
et al.,  2002; Zhuang et al.,  2002) while promoting gene flow and 
recruitment to new habitats (Bohonak,  1999; Howard,  1960). 
Recruitment away from the natal site may be especially important 
in patchy environments where home ranges are restricted in size 
(Barlow,  1981). Broadscale juvenile dispersal also promotes resil-
ience over evolutionary timescales, as a distribution of juveniles 
across regions increases the potential for species recovery from 
acute and localized habitat disturbances, as well as long-term pertur-
bations such as climate change (Bowen et al., 1994; Howard, 1960; 
Shamblin et al., 2014).

Juvenile dispersal is common in marine environments, where 
ocean currents facilitate movement among planktonic invertebrates 
(Baums et al., 2006; Duffy, 1993; McMillan et al., 1992), larval fish 
(Doherty et al., 1995; Waples, 1987), and young sea turtles (Putman 
& Naro-Maciel, 2013). In migratory species like sea turtles and sal-
monids, juvenile dispersal is more complex in that early dispersal is 
later followed by natal philopatry that assures mature females reach 
viable nesting or spawning habitat (Brothers & Lohmann,  2015; 
Lohmann et al., 2008; Putman et al., 2010). This site fidelity reduces 
potential gene flow and reinforces spatial patterns in mitochondrial 
lineages (Bowen et al., 1994; Bowen & Karl, 2007).

The least-studied sea turtle life stage is the initial post-hatching 
dispersal stage, lasting 1–12 years, after which most species recruit 
to juvenile habitats generally closer to the coast (Bolten,  2003; 
Mansfield & Putman,  2013). Known as the ‘lost years’, individuals 
in the early dispersing stage travel tens to thousands of kilome-
ters from their natal rookery (Mansfield et al., 2014, 2021; Putman 
& Mansfield,  2015; Putman & Naro-Maciel,  2013; Shamblin, 
Witherington, et al., 2018). Connectivity among juvenile and mature 
habitats needs to be assessed to effectively manage conservation 
priorities across the life cycle, as frequencies of maternally inher-
ited mitochondrial DNA (mtDNA) haplotypes within and among 
rookeries are used to delineate distinct population segments and 
regional management units for these turtle species of conservation 
concern (Wallace et al., 2010). From an evolutionary perspective, ju-
venile dispersal is a valuable proxy for understanding how species 
initially colonized ocean basins (Jensen et al., 2019; Reis et al., 2010; 
Shamblin et al., 2014) and provides insight into the potential for fu-
ture lineage diversification. While adult movements may contribute 
to range shifts, because of the strong natal philopatry exhibited by 
these species, we suggest that juvenile dispersal may better explain 
their global distribution and ocean basin colonization events.

Genetic analyses to date have identified well-resolved relation-
ships among the seven extant sea turtle species: a Carettini group 
including loggerheads (Caretta caretta), hawksbills (Eretmochelys 
imbricata), and the ridleys (Lepidochelys olivacea and L.  kempii); a 
Chelonini group including green turtles (Chelonia mydas) and flat-
backs (Natator depressus); and a separate Dermochelyidae lineage of 
leatherbacks (Dermochelys coriacea) (Bowen & Karl, 2007; Duchene 

et al.,  2012; Naro-Maciel et al.,  2008). These deeply diverged lin-
eages diversified across ocean basins, with most species broadly 
distributed while others (L.  kempii and N.  depressus) are limited to 
one basin (Bowen & Karl, 1996). Previous studies examined relation-
ships among sea turtle species and ocean basins through analyses 
of mtDNA and nuclear markers (Baltazar-Soares et al., 2020; Bowen 
& Karl,  2007; Naro-Maciel et al.,  2008), while more recent whole 
mitogenome analyses increase molecular resolution, but are limited 
by small sample sizes (Cho et al., 2018; Duchene et al., 2012; Otálora 
& Hernández-Fernández, 2018; Vilaça et al., 2021). In each case, ge-
netic analyses focus almost exclusively on rookery sites and data, 
while the mechanisms driving diversification patterns may actually 
be due to misdirected philopatry among post-dispersal individuals. 
Therefore, juvenile sea turtle dispersal in the context of the global 
gene tree may be key to understanding how and when populations 
established in each ocean basin, with ‘errors’ in natal philopatry 
post-dispersal facilitating invasion into new basins and subsequent 
diversification (Bowen & Karl, 2007). However, in situ data on juve-
nile dispersal is lacking, mainly due to the difficulty of observing and 
sampling the early life stage, which for most species occurs far from 
shore over many years in an environment that is in constant motion. 
Further, published observations and samples of dispersal-stage ju-
veniles to date are mostly in the Atlantic basin (Bolten et al., 1998; 
Putman & Mansfield,  2015; Shamblin, Witherington, et al.,  2018; 
Witherington, 2002; Witherington et al., 2012).

Within the Atlantic, there is high potential for multiple species 
and stocks to mix in the Gulf of Mexico, as ocean currents pass in 
close proximity to major rookeries throughout the basin and oceanic 
habitats within the Gulf occur relatively close to shore. These con-
ditions present a unique opportunity to sample turtles in this elu-
sive life stage (Putman & Mansfield, 2015; Shamblin, Witherington, 
et al., 2018; Witherington et al., 2012). Five of the seven sea tur-
tle species are commonly found in the Gulf of Mexico at various 
life stages, including the Atlantic-only Kemp's ridley (Valverde & 
Holzwart,  2017). Dispersal-stage juveniles in the Gulf are likely a 
mix from source rookeries in the Gulf of Mexico, Caribbean, and 
Atlantic, and these juveniles may then continue dispersing via the 
Gulf Stream to the North Atlantic or the Mediterranean. Samples 
from this region can thus shed light on both past and future patterns 
of diversification within and among species.

To investigate juvenile sea turtle dispersal as a mechanism of 
connectivity, the goals of our study were to (1) identify the lineages 
represented in dispersal-stage juvenile sea turtles in the Gulf of 
Mexico; (2) estimate the green turtle source rookeries contributing 
to the region, and (3) update the global gene tree of marine turtle 
mtDNA to refine our understanding of within-species relationships 
and identify gaps in sampling across ocean basins and life stages. 
We present new haplotype data from dispersing sea turtles sampled 
in the Gulf of Mexico in a mixed stock analysis to estimate poten-
tial rookery contributions. We also present comprehensive curated 
long-fragment haplotype data from the literature along with associ-
ated life-stage and location metadata to reconstruct a mitochondrial 
haplotype tree representing global lineages from the seven extant 
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species of sea turtles, a resource we hope other researchers will 
build upon in future analyses.

2  |  MATERIAL S AND METHODS

2.1  |  Field sampling

We sampled three species of dispersal-stage juvenile sea turtles 
offshore in the northern and eastern Gulf of Mexico in 2013–
2017. We launched 1 to 3-day sampling trips annually from Venice, 
Louisiana, USA, with additional trips out of Cortez, Florida, USA, in 
2016 (Figure 1). Samples from the Venice launch site are hereafter 
referred to as the Northern Gulf of Mexico, and samples from the 
Cortez launch site as the Eastern Gulf of Mexico (Figure  1). Each 
sampling trip occurred 25–120 km from shore in oceanic habitats. 
To locate these oceanic juvenile turtles, we first searched for 
floating lines of Sargassum seaweed and then navigated along the 
habitat in search of turtles on and around the Sargassum (Putman & 
Mansfield, 2015). Once a turtle was spotted, the vessel approached 
the turtles which we captured with a modified long-handled dip net. 
In addition to recording standard morphometrics (e.g., carapace 
measurements, weight, head width), we sampled blood and/or skin 
from each turtle, after which we released them in Sargassum near 
the point of capture. We spun the blood samples to separate the 
plasma and used the red blood cells for subsequent genetic analyses. 
We placed skin samples in ethanol until analysis. All animal handling 
followed our Institutional Animal Care and Use Committee guidelines 
and was conducted under National Marine Fisheries Service permits 
19508, 16733, and 1551.

2.2  |  DNA amplification and sequencing

We extracted DNA from 35 blood or skin samples using Qiagen 
DNeasy Blood & Tissue Kit standard protocols. From each DNA 
extraction, we amplified an ~800-base pair fragment of the 
mitochondrial control region using the primer pair LCM15382 and 
H950 (Abreu-Grobois et al., 2006) for the three hawksbills and two 
loggerheads. We amplified a longer ~950-bp control region fragment 
in the 30 green turtle samples using the primer pair LCM15382 and 
CM16437 (Shamblin, Bjorndal, et al.,  2012). These primers add 
150 bp to the fragment obtained using LCM15382 & H950, which 
could increase the discrimination between haplotypes (Shamblin, 
Bjorndal, et al.,  2012). Each 20 μl reaction contained 1  μl of DNA 
extract, 1 μl of each 10 μM primer, 2 μl 10× PCR buffer solution, 0.5 μl 
2.5 mM dNTPs, 1.2 μl 25 mM MgCl2, 0.2  μl Taq DNA polymerase, 
and 13.1 μl water. The final concentrations were: 0.5 μM per primer, 
10 mM Tris HCl pH 9.0, 50 mM KCl, 0.25 mM of each dNTP, 1.5 mM 
MgCl2, and 1 unit of Taq. For the primer pair LCM15382-H950, the 
PCR cycling parameters we used were: 95°C for 3 min; 35 cycles 
of 95°C for 30 s, 55°C for 60 s, 72°C for 30 s; and then 72°C for 
10 min. The PCR protocol for the primer pair LCM15382-CM16437 
was nearly identical to Shamblin, Bjorndal, et al.  (2012) but with 
a slightly higher annealing temperature: 95°C for 5 min; 40 cycles 
of 95°C for 30 s, 57°C for 30 s, 72°C for 80 s; and then 72°C for 
10 min. We purified each PCR product with ExoSAP-IT™ following 
the manufacturer's protocol and sent them to Eurofins Genomics 
LLC for Sanger sequencing. For green turtles with the haplotype 
CM-A1.1, we sequenced an additional ~300-bp fragment from the 
ND5 region of the mtDNA with primers CM12751F and CM13064R 
(Shamblin et al., 2017) and the first PCR protocol listed above. This 

F I G U R E  1 Dispersal-stage juvenile green turtles were sampled from two areas, one in the Northern Gulf of Mexico (N; n = 20) and 
one in the Eastern Gulf of Mexico (E; n = 10). The locations of green turtle rookeries included in the mixed stock analysis are shown (black 
dots) along with their haplotype frequencies as reported in the literature (Barbanti et al., 2019; Bjorndal et al., 2005, 2006; Encalada 
et al., 1996; Formia et al., 2006, 2007; Hancock et al., 2019; Jordão et al., 2015; Millán-Aguilar, 2009; Patrício et al., 2017; Pérez-Ríos, 2008; 
Ruiz-Urquiola et al., 2010; Shamblin et al., 2015, 2017; Shamblin, Bjorndal, et al., 2012; Shamblin, Witherington, et al., 2018; see Table S1). 
All hawksbills (n = 3) and loggerheads (n = 2) were encountered in the Northern Gulf of Mexico sampling area. The major currents are 
represented by blue arrows.
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fragment was identified to contain a diagnostic SNP in a previous 
mitogenome study (Shamblin et al., 2017). We aligned, edited, and 
compared sequences to known Atlantic haplotypes in Geneious R9 
software (Kearse et al., 2012).

2.3  |  Mixed stock analysis

Due to low sample sizes in two of the species, we focused on green 
turtles for a Bayesian mixed stock analysis (MSA) of individuals 
sampled in 2016–2017 using the mixstock package in R version 
4.0.2 (Bolker et al.,  2003, 2007; R Core Team,  2016) to estimate 
probabilities of source rookery contributions. We used the holistic 
“many-to-many” approach, which estimates contributions from 
potential source rookeries to multiple mixed destinations (Bolker 
et al., 2007), as opposed to the “many-to-one” model that estimates 
contributions to a single mixed site at time (Bolker et al., 2003; Pella & 
Masuda, 2001; Pella & Milner, 1987; Smouse et al., 1990). In addition 
to more closely reflecting sea turtle population connectivity, the 
“many-to-many” approach produces tighter confidence intervals than 
the “many-to-one” analysis (Bolker et al., 2007; Jensen et al., 2020). 
The mixstock package also computes an “unknown” mixed stock, 
without assuming rookeries contribute only to sampled sites (Bolker 
et al., 2007). We limited our mixed stock analyses to the dispersal 
stage for which we defined two potential mixed stocks: one in the 
Northern Gulf of Mexico and one in the Eastern Gulf (Figure 1). For 
the MSA, we truncated our sequences to shorter fragments (~500-
bp) to match the majority of rookery haplotype frequencies reported 
in the literature based on the shorter fragment.

The green turtle rookeries included in the analysis (Figure  1) 
were located along the coasts of Bijagós Archipelago, Guinea-
Bissau (GUIB); Bioko Island, Equatorial Guinea (BIOK); São Tomé 
and Príncipe (STP); Ascension Island (AI); Rocas Atoll, Brazil (BRRA); 
Fernando de Noronha, Brazil (BRFN); Awala-Yalimapo and Cayenne, 
French Guiana (FGUI); Matapica and Galibi, Suriname (SURN); Aves 
Island, Venezuela (AVES); Tortuguero, Costa Rica (TORT); Grand 
Cayman, Cayman Islands (CAYI); Guanahacabibes Peninsula and 
San Felipe, Cuba (SWCU); Quintana Roo, Mexico (QRMX); Cayo 
Arcas, Mexico (CAMX); Scorpion Reef, Mexico (SRMX); Campeche 
and Yucatán, Mexico (EBCMX); Tamaulipas and Veracruz, Mexico 
(WBCMX); Jupiter Island, Tequesta, Singer Island, Boca Raton, 
Broward, Key West NWR, and Dry Tortugas, USA (SOFL); and Cape 
Canaveral, Melbourne Beach, and Hutchinson Island, USA (CEFL). 
We ran several mixed stock models that incorporated (1) rookery 
size, measured as the number of nests per year, and (2) probabil-
ity of transport to the area by ocean currents (Bolker et al., 2007; 
Okuyama & Bolker, 2005; Putman & Mansfield, 2015).

Model 1 estimated rookery contributions by incorporating the 
haplotype frequencies from each potential source and both off-
shore sites along with the size of each rookery (Tables S1 and S2). 
We sourced rookery sizes from the literature (Bellini et al.,  2013; 
Blumenthal et al., 2021; Broderick et al., 2006; Girard et al., 2016; 
Millán-Aguilar,  2009; Rodríguez-Martínez et al.,  2021; Seminoff 

et al.,  2015; Shamblin et al.,  2015; Shamblin, Witherington, 
et al., 2018; van der Zee et al., 2019; Vera & Buitrago, 2012) to rep-
resent nest counts as close to the sampling period as possible given 
recent increases in green turtle rookery sizes at many sites (Seminoff 
et al., 2015). Model 2 also included particle back-tracking probabil-
ities from rookeries to the sampled area as calculated by Putman 
et al.  (2015). Models 3 and 4 were similar to Models 1 and 2 but 
with the addition of haplotypes from dispersal-stage green turtles 
sampled at similar sites to our Northern Gulf mixed stock samples 
as part of a separate study in 2009–2015 (Shamblin, Witherington, 
et al., 2018; Table S3). The sizes of the dispersing green turtles at 
our sites (Putman & Mansfield,  2015; current study) indicate that 
the turtles we encountered were likely 1–3 years of age (Reich 
et al., 2007; Witham & Futch, 1977). Therefore, Models 2 and 4 uti-
lized particle back-tracking probabilities within 2 years of drift to the 
sampled area (Putman et al., 2015) to scale rookery inputs to include 
transport probabilities (Okuyama & Bolker, 2005; Table S4). Models 
2 and 4 did not include South Florida or Central Florida as potential 
source rookeries because the estimated probability of transport via 
ocean currents to the sample sites within 3 years is zero (Putman 
et al., 2015). Each model run consisted of 100,000 iterations with a 
burn-in of 50,000. We ran the Gelman and Rubin shrink factor diag-
nostic to test for convergence (<1.2) (Pella & Masuda, 2001).

2.4  |  Global haplotype curation

To place the offshore juveniles sampled in the Gulf of Mexico in a 
broader phylogenetic context, we curated the named long-fragment 
control region haplotypes for each of the seven sea turtle species 
found globally through a literature search and sequence similarity 
search on GenBank (Clark et al., 2016). For the literature search, we 
used Google Scholar to find studies that used the long-fragment 
primers LCM15382/H950, LTEi9/H950 (Abreu-Grobois et al., 2006), 
or the green turtle-specific pair LCM15382/CM16437 (Shamblin, 
Bjorndal, et al.,  2012), and downloaded sequences as provided 
by the authors or from GenBank accession IDs. For the GenBank 
search, we used BLAST (Clark et al.,  2016) to find highly similar 
sequences to known haplotypes. In the case of Atlantic C. caretta 
and Atlantic C. mydas haplotypes, we additionally drew from the cu-
rated haplotype database on the Archie Carr Center for Sea Turtle 
Research website (https://accstr.ufl.edu/resou​rces/mtdna​-seque​
nces). We used the guidelines set forth by Arantes et al.  (2020) to 
resolve redundancies in hawksbill haplotype naming. In the event 
that two or more haplotypes had different names but identical se-
quences, we collected the duplicate sequence names and retained 
the haplotype designation that was most consistent with others for 
the species. When two unique haplotype sequences were named 
identically, we appended the last name of the author who published 
the sequence in the literature or on GenBank. For each haplotype, 
we noted the life stage(s) and ocean basin(s) represented in the lit-
erature. We binned the life stages into five categories based on the 
size and location of encountered turtles: dispersal-stage juveniles; 

https://accstr.ufl.edu/resources/mtdna-sequences
https://accstr.ufl.edu/resources/mtdna-sequences
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post-dispersal juveniles; mixed post-dispersal juveniles/in-water 
adults; in-water adults; and rookery (from nesting female, egg, and/
or hatchling samples). Some studies did not explicitly state which 
haplotypes belonged to which individuals sampled at mixed juvenile/
adult foraging sites, which necessitated the mixed stage category. 
The in-water adult observations consist of samples taken at foraging 
sites, and stranding data were assumed to occur near foraging sites.

2.5  |  Gene tree analysis

We imported sequences to Geneious and removed any duplicates. 
We used sequences from the alligator snapping turtle Macroclemys 
temminckii (EF071948.1) and the common snapping turtle Chelydra 
serpentina (EF122793.1) as outgroups. We aligned the sequences 
using the Clustal Omega algorithm with default parameters (Sievers 
et al., 2011) on the EBI server (Madeira et al., 2019) and manually 
adjusted the alignment in Geneious. To find the best model of 
sequence evolution, we used PartitionFinder v. 2.1.1 (Lanfear 
et al., 2017) and the Akaike Information Criterion for small sample 
sizes to select models of evolution to run in MrBayes. We ran 
PartitionFinder with both linked and unlinked branch lengths and 
used a greedy search algorithm. The greedy search algorithm uses 
a heuristic approach to search for a good partitioning scheme, as 
opposed to one that searches all possible partition schemes. The 
best model was the general time reversible model with invariant 
sites and gamma distribution of rates across sites (GTR + I + G). 
We reconstructed a Bayesian gene tree in MrBayes v. 3.2.7a on 
the CIPRES Science Gateway server (Miller et al.,  2010) with two 
independent runs for 3.0 × 107 generations and four chains each, 
sampling every 500th generation with the first 100,000 generations 
discarded as burn-in. We confirmed Markov chain Monte Carlo 
convergence and adequate sampling of the posterior distribution 
(parameter ESS > 200) in Tracer v. 1.7 (Rambaut et al., 2018). We also 
reconstructed a maximum likelihood gene tree with the software 
IQ-TREE on the IQ-TREE web server (Trifinopoulos et al., 2016) to 
compare topologies. We visualized the Bayesian gene tree using 
the R package ggtree v3.3.0.900 in RStudio using R v. 4.1.2 (R Core 
Team, 2016; Yu et al., 2017) and incorporated the associated ocean 
basin and life-stage data obtained during haplotype curation.

We used BEAST2 v. 2.6.6 (Bouckaert et al., 2019) on the CIPRES 
server to estimate divergence times between the sea turtle species 
and major lineages within species. We used the program BEAUTi 
(Drummond et al., 2012) to prepare the input file specifying the fol-
lowing parameters: the alignment, site model, clock model, MCMC 
chain length and sampling scheme, priors for the tree, and the birth-
rate and fossil calibration times. We implemented a strict clock and 
a Hasegawa-Kishino-Yano site model (Hasegawa et al., 1985), rather 
than the more parameter-rich GTR used in the MrBayes analysis, to 
obtain chain convergence. We set a Yule tree prior (Yule, 1925) and 
one fossil calibration point at the root based on a divergence esti-
mate between Dermochelyidae and Cheloniidae at 48.4–149.5 mya 
(Joyce et al., 2013) with uniform distribution.

We chose not to include three other fossil calibration points often 
cited in the literature. Recent studies adjust the Dermochelyidae-
Cheloniidae estimate, from >100 mya (Weems, 1988; Zangerl, 1980) 
to approximately 60 mya (Joyce et al.,  2013; Shaffer et al.,  2017; 
Thomson et al.,  2021), which conflicts with fossil calibrations 
for Chelonini-Carrettini at 50–75 mya (Ernst & Barbour,  1989; 
Weems,  1988) and suggests reexamination may also be needed 
for Caretta-Lepidochelys at 12–20 mya (Carr & Marchand,  1942; 
Zangerl, 1980). The calibration point cited for divergence between 
L.  olivacea and L.  kempii (4.5–5 mya) is based on a single L.  kempii 
fossil, which was dated indirectly (Dodd & Morgan, 1992), the use of 
which may artificially constrain divergence estimates.

We ran the BEAST analysis on the CIPRES server with a chain 
length of 1 × 108, sampling every 10,000 generations and discarding 
the first 10,000,000 as burn-in. We confirmed posterior distribution 
sampling in Tracer v. 1.7 as described for the previous analysis and 
calculated the final gene tree with divergence estimates and 95% 
highest posterior densities (HPD) in TreeAnnotator v. 1.2.59. We 
created a visualization of the resulting gene tree and divergence time 
estimates with the ggtree package in R (Yu et al., 2017).

3  |  RESULTS

3.1  |  Field sampling

We sampled and sequenced 35 dispersal-stage turtles from three 
species in the northeastern Gulf of Mexico from 2013–2017: green 
turtles (Chelonia mydas, n = 30); hawksbills (Eretmochelys imbricata, 
n  =  3); and loggerheads (Caretta caretta, n  =  2). The sequenced 
turtle straight carapace lengths (SCL) ranged from 14.7–24.5  cm, 
with a mean size of 19.1 cm (SD 2.2 cm) for green turtles, 17.0 cm 
(SD 3.3 cm) for loggerheads, and 16.9 cm (SD 1.4 cm) for hawksbills. 
While sampled green turtles were larger on average, they were 
also the only species encountered during a late-summer Eastern 
Gulf sampling trip in September 2016. Hawksbill and loggerhead 
encounters were limited to May–July in the Northern Gulf. We found 
four green turtle haplotypes: Cm-A1.1 (n  =  20); Cm-A3.1 (n  =  7); 
Cm-A18.1 (n  =  2); Cm-A28.1 (n  =  1). Of the individuals identified 
as Cm-A1.1, we analyzed 19 for the diagnostic mitochondrial SNP, 
and all but one identified as Cm-A1.1.1 (n  =  18), with one Cm-
A1.1.2 (Shamblin et al., 2017). All three hawksbills sampled were the 
haplotype Ei-A23. The two loggerheads sampled were Cc-A1.1 and 
Cc-A4.1 (Table S5).

3.2  |  Mixed stock analysis

The MSA estimates from the four models indicated contributions 
from rookeries throughout the northwest Atlantic, Caribbean, 
and South Atlantic (Figure 2). The contributions to each offshore 
sampling area differed, with the Northern Gulf site receiving a 
higher proportion of juveniles from rookeries along the Western 
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Bay of Campeche (Tamaulipas and Veracruz, Mexico) while there 
is a higher probability of rookeries along the eastern coast of 
the Yucatan (Quintana Roo, Mexico) contributing to the Eastern 
Gulf site. The credibility intervals around the estimates were 
reduced for the Northern Gulf in Models 3 and 4, while credibility 
intervals were broad for all models in Eastern Gulf, likely due 
to low sample sizes. General trends were similar across all four 
models (Table S6), and we will focus on the estimates from Model 
4 here, which included transport probabilities, as well as additional 
samples from Shamblin, Witherington, et al.  (2018). For the 
Northern Gulf, Model 4 indicates high contribution probabilities 
from three rookeries in Mexico (West Bay of Campeche, East 
Bay of Campeche, Quintana Roo), as well as from Costa Rica 
and Suriname (Figure  2). In contrast, the Eastern Gulf estimates 
suggest the highest contribution from Quintana Roo, with lower 
contributions from Costa Rica and Suriname.

3.3  |  Gene tree analysis

We assembled 709 unique long-fragment mtDNA haplotype 
sequences across ocean basins and life stages (Tables  S7–S14). 
The Bayesian and maximum likelihood gene trees produced similar 
topologies (Figure 3, Figure A1). Relationships among species were 
consistent with previous work (Bowen & Karl, 2007; Cho et al., 2018; 
Duchene et al., 2012; Evers & Benson, 2019; Naro-Maciel et al., 2008; 
Otálora & Hernández-Fernández,  2018). However, some within-
species relationships differed.

The Atlantic/Mediterranean-associated green turtle clades I and 
II were most closely related to Pacific clades III and IV as has been 

previously described (Jensen et al.,  2019); however, the Atlantic 
clades were nested within other Pacific clades (Figure 3, Figure A2) 
in contrast with other studies, which found that the Atlantic clades 
split from Pacific clades closer to the root of the green turtle tree 
(Boissin et al., 2019; Duchene et al., 2012; Jensen et al., 2019). Unlike 
Jensen et al. (2019), the earliest green turtle split we identified was 
clade VIII from the rest of the clades with high confidence (pos-
terior probability =  1). Two green turtle haplotypes (JF926559.1, 
JF926560.1) from the Indo-Pacific rookery on Vamizi Island, 
Mozambique (Anastácio et al., 2014), fall within the Atlantic clade II 
with haplotypes from Brazil and Guinea-Bissau (Patrício et al., 2017; 
Shamblin et al., 2015). Mediterranean green turtle haplotypes clus-
ter with haplotypes in clade I found in the USA, specifically rook-
eries in the US Virgin Islands and Florida (Shamblin et al.,  2015, 
2017; Shamblin, Bjorndal, et al., 2012) and juveniles in Florida and 
Puerto Rico (Chabot et al., 2021; Gorham et al., 2016; Naro-Maciel 
et al., 2017; Patrício et al., 2017). We identified just one green tur-
tle haplotype found in both Atlantic and Mediterranean rookeries: 
CmA-13.1 (Bradshaw et al.,  2018; Garofalo et al.,  2013; Gorham 
et al., 2016; Shamblin et al., 2015, 2017).

In loggerheads, Atlantic haplogroup II and Pacific haplogroup IA 
are more closely related to one another than either are to Atlantic 
haplogroup IB (Figure A3), unlike previous studies pairing IA and IB 
(Shamblin et al., 2014).

In hawksbills, the Atlantic clades I, IIA, and IIB appear nested 
within the Indo-Pacific clades. The “EiA” haplotypes within Indo-
Pacific clade II (EiA49, 70, 75, 82, and 87) are orphan haplotypes 
found in juveniles in the south Atlantic, likely of Indo-Pacific origin 
because of close relationships with sequences from rookeries in 
Seychelles, Mozambique, and Chagos Archipelago (Figure A4).

F I G U R E  2 Mixed stock analyses for offshore juvenile green turtles sampled in two regions in the Gulf of Mexico. Models 1 and 2 include 
turtles sampled for the current study (Northern Gulf n = 20; Eastern Gulf n = 10), while Models 3 and 4 in green also include results from 
121 samples reported by Shamblin, Witherington, et al. (2018) in the northern gulf. Points are mean estimates and whiskers indicate 95% 
credibility intervals. Rookeries along the x-axis are grouped by regional management units (Wallace et al., 2010). In the most comprehensive 
Model 4, the highest estimated contributions to the Northern Gulf of Mexico were from rookeries along the Western Bay of Campeche 
(WBCMX: 0.51 [0.41–0.61]), Eastern Bay of Campeche (EBCMX: 0.20 [0.06–0.34]), and from Tortuguero, Costa Rica (TORT: 0.10 [0.00–
0.26]), while the highest estimated contributions to the Eastern Gulf of Mexico originated from Quintana Roo, Mexico (QRMX: 0.57 [0.31–
0.81]), Tortuguero (TORT: 0.23 [0.02–0.52]), and rookeries in Suriname (SURN: 0.09 [0.00–0.25]).
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F I G U R E  3 Bayesian gene tree of the seven extant sea turtle species based on long-fragment mitochondrial DNA haplotypes. 
Reconstructed in the program MrBayes with ocean basins and sea turtle life stages in which each haplotype has been observed noted by 
bars to the right. Black dots on nodes indicate posterior probability support ≥0.99.

Lepidochelys kempii

Lepidochelys olivacea

Caretta caretta

Eretmochelys imbricata

Natator depressus

Chelonia mydas

Dermochelys coriacea

Ocean basin

Life stage

F I G U R E  4 Dated Bayesian sea turtle 
mtDNA gene tree based on a Hasegawa-
Kishono-Yano substitution model in 
BEAST. The bar at each node indicates the 
95% highest posterior density interval. 
Black dots indicate nodes with posterior 
probability support ≥0.99. The pairing 
of C. caretta clades IA and II (posterior 
probability = 1) differs from Shamblin 
et al. (2014). This analysis also suggests 
an early division between C. mydas 
Atlantic clades I-II and Pacific clades III-XI 
(nomenclature from Jensen et al., 2019); 
however, this topology differs from the 
GTR gene tree in Figure 3.
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In terms of the life stages represented, we did not find long-
sequence mtDNA data for dispersal-stage juvenile olive ridleys, 
Kemp's ridleys, flatbacks, or leatherbacks (Figure 3, Figures A5–A8).

3.4  |  Divergence estimates

The following divergence time estimates are from the strict clock 
Bayesian model with a single calibration point, though we report 
estimates from a model with four common fossil calibrations in the 
Appendix (Figure A9) for comparison with other studies. Estimated 
divergence times at the species level were as follows: snapping 
turtle outgroup—marine turtles 152.73 mya; Dermochelyidae—
Cheloniidae 89.34 mya; Carettini—Chelonini 73.40 mya; Chelonia—
Natator 46.46 mya; Eretmochelys—Caretta/Lepidochelys 45.29 mya; 
Caretta—Lepidochelys 28.12 mya; and L. olivacea—L. kempii 5.14 mya 
(Figure 4).

Species divisions between ocean basins for hawksbills and 
leatherbacks were not well-supported; therefore, divergence times 
are not presented below the species level for those species or the 
single-basin Kemp's and flatbacks (Figure 4). Divergence estimates 
within the remaining species in Figure 4 reflect posterior probabili-
ties of 99% or higher. The olive ridley Indian Ocean clade diverged at 
5.14 mya (2.46–9.13); the remaining olive ridley clades split later at 
3.37 mya (1.66–6.02).

The sorting of loggerhead clades IA and II as sister clades in the 
gene tree analysis was also well-supported in the time tree. The 
divergence estimate between loggerhead clades II/IA from IB was 
9.84 mya (5.16–17.34) followed by the split between clade II and 
Pacific IA at 7.44 mya (3.76–13.19). These divergence estimates 
among loggerhead clades are earlier than the divergence between 
the two Lepidochelys species estimated at 5.14 mya (6.50–21.68).

The chronogram suggests a split between Atlantic green turtle 
clades I and II from the Pacific clades at the root of the C.  mydas 
clade with high support (posterior probability  =  1). Interestingly, 
our gene tree nested Atlantic clades I and II within the Indo-Pacific 
clades and paired with clades III and IV (Figure 3). With this in mind, 
our Atlantic-Pacific lineage split should be interpreted with caution: 
our estimate of 13.14 mya (7.28–22.97) occurs much earlier than pre-
vious estimates of the split between clades I–II and clades III–IV at 
2.34 mya (Jensen et al., 2019), 1.5–3 mya using RFLP mtDNA (Bowen 
et al.,  1992), and 3.09 mya using whole mitogenomic sequences 
(Duchene et al., 2012), though closer to the 7.0 mya estimate that 
used a combination of nuclear and mtDNA sequences (Naro-Maciel 
et al., 2008). Within Atlantic greens, the estimate for the split be-
tween clades I and II is 5.00 mya (2.41–9.00), again much earlier than 
Jensen et al. (2019) at 0.79 mya.

4  |  DISCUSSION

Our results fill in part of the sea turtle juvenile dispersal picture and 
illustrate the remaining data gaps. The comprehensive gene tree 

analysis of long-fragment mtDNA shows considerable missing data 
for dispersal-stage juveniles across basins, as well as post-dispersal 
juveniles (Figure 3). These two life stages in particular need more 
sampling and monitoring; because of these species' long genera-
tion times, perturbations in the juvenile stages result in downstream 
population effects that may not be observable at rookeries for dec-
ades. Models of dispersal based on ocean currents alone can be used 
to build hypotheses for areas where juveniles will occur (Putman 
et al., 2015; Putman & Naro-Maciel, 2013; Shamblin, Witherington, 
et al.,  2018); however, the impact of turtle behavior on their ulti-
mate paths (Putman & Mansfield,  2015) is still poorly understood 
and needs additional data from in situ sampling for ground-truthing 
(Putman et al., 2016).

Our mixed stock analysis indicates that the majority of 
dispersal-stage green turtles in the northeastern Gulf of Mexico 
originate in Mexico, though we should note that these analyses 
are based on available rookery data; estimates may change if more 
rookeries, higher sampling within each rookery, or longer DNA 
fragments are incorporated in the future. Putman et al. (2015) es-
timated that the oceanic juvenile green turtles impacted by the 
Deepwater Horizon oil spill in the northern Gulf of Mexico likely 
originated from Mexico, Costa Rica, Suriname, and Guinea-Bissau 
based on ocean currents and rookery sizes. However, the combi-
nation of genetic evidence and current transport we present here 
suggests little if any contributions from Suriname and Guinea-
Bissau (Figure  3), likely due to limited overlap in haplotypes be-
tween our sites and these rookeries informing the MSA. Our data 
collected in 2016–2017 indicate that Quintana Roo, Mexico is the 
major contributor to the Eastern Gulf of Mexico sampling site, 
while a higher proportion of juveniles in the northern Gulf origi-
nate along the western Bay of Campeche. However, we note that 
the majority of the Eastern Gulf samples were from a later sam-
pling trip in September 2016, and juvenile dispersal patterns may 
differ in early summer versus late summer due to shifts in the cur-
rents and hatching times. Turtles originating from Quintana Roo 
are likely to encounter the loop current, and based on its dynam-
ics at the time of hatching, dispersing juveniles will either enter 
the Gulf of Mexico or bypass the Gulf and join the Gulf Stream 
at the southern tip of Florida and travel into the North Atlantic. 
The combination of our samples from the northern Gulf with the 
results of Shamblin, Witherington, et al. (2018) provides additional 
evidence that a majority of the dispersal-stage green turtles in 
the northern Gulf of Mexico originate from the western Bay of 
Campeche, or that currents linking these two areas were stron-
ger during the years sampled. A previous study of juvenile green 
turtle strandings along the coast of Texas, USA, also found rooker-
ies along the western Gulf of Mexico as a likely source (Shamblin 
et al., 2017). Of the 19 Cm-A1.1 green turtles that we analyzed for 
the additional diagnostic mitochondrial SNP, all but one matched 
the Cm-A1.1.1 haplotype previously found to be fixed in samples 
analyzed from a western Bay of Campeche rookery (Shamblin 
et al.,  2017). Together, these results indicate that the rookeries 
along the western Bay of Campeche are major contributors to the 
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genetics of dispersal-stage juvenile green turtles in the northern 
Gulf of Mexico.

Though a small green turtle rookery, juveniles from the 
Cayman Islands may complicate mixed stock estimates because 
of re-introductions from outside rookeries (Costa Rica, Suriname, 
Guyana, Ascension Island) and in-water sites (Costa Rica, Suriname, 
Guyana, Ascension Island, Mexico, and Nicaragua), which were col-
lected to stock the Cayman Turtle Farm in the 1960s–70s (Barbanti 
et al.,  2019). Subsequent releases of head-started juveniles have 
been organized to replenish the natural population (Barbanti 
et al., 2022; Bell et al., 2005). Therefore, it is possible that haplo-
types suggesting connectivity with Costa Rica and Suriname in our 
models are actually from the Cayman Islands. Additional sampling 
from this rookery will help clarify this issue. As conservation manag-
ers develop plans for future reintroduction initiatives, the tools are 
now available to better match the genetics of the recipient popula-
tion to the source population.

We did not have sufficient sample sizes to perform mixed stock 
analyses for dispersal-stage loggerheads and hawksbills in the Gulf 
of Mexico, and inferences about source populations are, therefore, 
limited. The EiA23 hawksbill haplotype has been considered by some 
exclusive to rookeries in Mexico (Labastida-Estrada et al., 2019), and 
while it has also been found in rookeries in the Dominican Republic 
(Carreras et al.,  2013) and US Virgin Islands (Leroux et al.,  2012), 
its highest relative frequency occurs at Mexican rookeries along 
the Yucatan Peninsula (Labastida-Estrada et al.,  2019; Leroux 
et al., 2012). The connectivity between Mexican green turtle rook-
eries and dispersal-stage juveniles in the Gulf of Mexico (Figure 2) 
may also occur in hawksbills, and is consistent with previous rook-
ery estimates for coastal post-dispersal juvenile hawksbills ob-
served in the southeastern Gulf of Mexico (Gorham et al.,  2014) 
and southeastern Florida (Wood et al.,  2013); however, additional 
sampling of dispersal-stage individuals in the Gulf is needed to con-
firm. If only using a short fragment, the long-fragment haplotype 
EiA23 is indistinguishable from EiA24, EiA39, EiA41, EiA42, EiA43, 
and EiA83, found in Mexican rookeries but also in the Dominican 
Republic, Trinidad and Tobago, Antigua and Barbuda, Nicaragua, 
and Puerto Rico, USA (Carreras et al.,  2013; Cazabon-Mannette 
et al.,  2016; Labastida-Estrada et al.,  2019; Leroux et al.,  2012; 
Levasseur et al., 2019; Velez-Zuazo et al., 2008), illustrating that the 
longer mtDNA fragment is key for higher genetic resolution among 
rookeries.

The two haplotypes found in the dispersal-stage loggerheads 
in this study, Cc-A4.1 and Cc-A1.1, both fall within haplogroup IB 
(Figure A3). While Cc-A1.1 is common at nearby rookeries along the 
southeastern US, Cc-A4.1 has only been found in Brazilian rookeries 
to date (Shamblin et al., 2014). The long transport of this haplogroup 
is not an isolated event, as Cc-A4 has been found in juveniles caught 
as bycatch in the North Atlantic “northeast distant” fisheries region 
(LaCasella et al.,  2014; Stewart et al.,  2019) and a North Carolina 
pound net fishery (Bass et al.,  2004), as well as in a loggerhead-
green turtle hybrid encountered along the Florida coast (Shamblin, 
Mansfield, et al., 2018). Loggerhead juvenile dispersal to the North 

Atlantic from South Atlantic rookeries may be facilitated by seasonal 
shifts in the South Equatorial Current late in the Brazilian logger-
head hatching season, distributing hatchlings northward (Mansfield 
et al., 2017). This dispersal-stage connectivity supports hypotheses 
that Cc-A1.1 in the USA may stem from the Cc-A4 lineage in Brazil 
(Baltazar-Soares et al., 2020), as opposed to the Brazilian population 
established from the USA (Reis et al., 2010). Broad juvenile disper-
sal may be the key mechanism behind this lineage colonizing new 
regions and basins.

Assumptions about connectivity among populations and lin-
eages are limited by the breadth and depth of sampling. For ex-
ample, a study of stranded juvenile loggerheads along the coast of 
France concluded that turtles with the haplotype Cc-A1.3 must have 
originated from Cape Verde, as it had only been observed in Cape 
Verdean rookeries at the time (Monzón-Argüello et al., 2010, 2012). 
But that haplotype has since been sampled at rookeries in North 
America (Shamblin, Bolten, et al., 2012). One assumption of mixed 
stock models is that all source populations have been adequately 
sampled. Increasing sample sizes, sites, markers, and data sharing 
among studies will further improve future estimates.

Worldwide, the largest sampling gap across sea turtle species is 
the dispersal stage (Figure 3). Haplotypes for this life stage are so 
far only available from the Gulf of Mexico for green turtles (current 
study, Shamblin, Witherington, et al., 2018), the Gulf of Mexico (cur-
rent study) and strandings in France (Monzón-Argüello et al., 2012) 
for loggerheads, and the Gulf of Mexico (current study) and strand-
ings in UAE (Natoli et al., 2017) for hawksbills. Connectivity among 
life stages is also difficult to characterize in a genetic framework 
because there are few nucleotide differences between mtDNA 
haplotypes, both for delineating within-species lineages and among 
species for which close genetic relationships remain despite deep 
divergence.

Previous estimates of species divergence times vary, gener-
ally 50–110 million years for the separation between leatherbacks 
and the hard-shelled species, and 25–65 million years for dividing 
Carettini from Chelonini (Arantes et al., 2020; Duchene et al., 2012; 
Joyce et al., 2013; Naro-Maciel et al., 2008; Thomson et al., 2021; 
Vilaça et al., 2021). Our marine turtle divergence estimate of 152.73 
mya is similar to previous estimates for the split from the snapping 
turtle lineage (Figure  A10). The emergence of Dermochelyidae at 
89.34 mya is closest to a previous estimate based on nuclear DNA 
across the genome (Vilaça et al.,  2021). At the shallower internal 
nodes, our estimates track closely with those based on an analysis 
of whole mitogenomes (Duchene et al., 2012). The consistency of 
our estimates with studies that include a range of nuclear and mito-
chondrial markers may be surprising given that we reconstructed a 
chronogram based on only a fragment of the mitochondrial genome, 
though it speaks to the utility of mtDNA fragments when used in 
large sample sizes.

Our gene tree analysis recovered the 11 green turtle clades 
previously described by Jensen et al.  (2019), though with a longer 
mtDNA fragment and additional haplotypes our topology differs 
(Figure A2). The deep divergence of green turtle clade VIII suggests 
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an Indo-Pacific origin for the species, a hypothesis proposed for 
loggerheads, ridleys, and leatherbacks as well (Bolten et al., 1998; 
Dutton et al.,  1999; Shamblin et al.,  2014; Shanker et al.,  2004). 
Like Jensen et al. (2019), our results from the gene tree analysis in 
MrBayes paired Atlantic clades I and II with Indo-Pacific clades III and 
IV, while our dated tree results from BEAST split Atlantic clades I and 
II at the base of the green turtles. This difference may be because 
our dated tree is based on a HKY model while the MrBayes tree 
is based on a GTR model, and suggests that the more-informative 
GTR-modeled topology with the Atlantic clades nested within 
Indo-Pacific clades may be more accurate. The Atlantic hawksbill 
clades are also nested within the Indo-Pacific lineages in our gene 
tree analysis (Figure 3), suggesting a similar diversification pattern 
in both green turtles and hawksbills (Nishizawa et al., 2010, 2012; 
van der Zee et al., 2021). Within the mainly Indo-Pacific hawksbill 
Clade IP-I, the haplotypes EiIP-27, EiIP-33, and EiIP-36 span op-
posite sides of the Indo-Pacific from Iran, UAE, and Seychelles to 
the Pacific coast of central America (Gaos et al., 2016, 2018, 2020; 
LaCasella et al., 2014; Natoli et al., 2017; Tabib et al., 2014; Vargas 
et al., 2016; Zuñiga-Marroquin & De Los Monteros, 2017; Table S10). 
Additionally, a juvenile hawksbill with the haplotype EiP-33 observed 
off the coast of Brazil (Vilaça et al., 2013) is so far the only observa-
tion from Clade IP-I in the Atlantic but demonstrates that connectiv-
ity through juvenile dispersal may have facilitated the establishment 
of the Atlantic clades from the Indo-Pacific. On the other hand, evi-
dence of connectivity between haplotypes from green turtle rooker-
ies in Mozambique (Anastácio et al., 2014), which fall within Atlantic 
clade II (Figure 3, Figure A2), previously seen with short fragments 
(Bourjea et al., 2007), provides evidence of Atlantic to Indo-Pacific 
movement more recently. Additional trans-basin juvenile dispersal 
is evident in loggerheads, with Atlantic haplotypes CcA-1.1, CcA-
1.3, CcA-1.4 recovered from juveniles in the Mediterranean (Clusa 
et al., 2014; Garofalo et al., 2013; Tolve et al., 2018) and hawksbills, 
with Atlantic orphan haplotypes EiA-49, EiA-70, EiA-75, EiA-82, 
and EiA-87 closely related to sequences from Indo-Pacific rooker-
ies in Seychelles, Mozambique, and Chagos Archipelago (Anastácio 
& Pereira,  2017; Monzón-Argüello et al.,  2011, 2010; Putman 
et al., 2014; Vargas et al., 2016; Vilaça et al., 2013; Figure A4).

The pairing we found of loggerhead clades IA and II differs from 
other recent analyses that paired Atlantic/Mediterranean clade IB 
with Pacific IA (Bowen, 2003; Shamblin et al., 2014) though is similar 
to an earlier study using short mtDNA fragments (Bowen et al., 1994). 
Based on a previous haplotype network analysis, the haplotypes in 
Pacific clade IA appear to cluster in an intermediate position with mu-
tational steps in either direction to the two Atlantic/Mediterranean 
clades IB and II (Arantes et al., 2020). Our gene tree analyses con-
tain more haplotypes from the Pacific clade IA compared to previ-
ous studies, which may explain the shifted pairing of sister clades. 
This arrangement of the clades (Figure  4, Figure A3) supports the 
hypothesis of two dispersal events from the Indo-Pacific establish-
ing the Atlantic lineages (Baltazar-Soares et al., 2020). We echo a call 
by Shamblin et al. (2014) for additional sampling and deeper genetic 
analysis from two large Indo-Pacific rookeries with only one mtDNA 

haplotype identified at each to date: Masirah Island, Oman, and 
Tongaland, South Africa. The position of each of these haplotypes 
(Cc-A11.6 and Cc-A2.1, respectively) nested in separate Atlantic 
clades may indicate more recent dispersal to the Indian Ocean from 
Atlantic (Bowen et al.,  1994). The haplotypes from Mediterranean 
loggerhead rookeries are exclusive to Clade II, though juveniles from 
Clade IB have been observed in the Mediterranean (Clusa et al., 2014; 
Garofalo et al., 2013; Tolve et al., 2018) and may provide insight into 
future diversification. The longer estimated duration loggerhead 
juvenile dispersal stage—based on their larger size at recruitment 
to post-dispersal habitats of ~55 cm as opposed to ~25 cm in green 
turtles and Kemp's ridleys (Bolten, 2003)—likely helps explain these 
disparate colonization waves.

The Gulf of Mexico is an important habitat for adult foraging 
leatherbacks from nesting beaches in Costa Rica and Panama (Evans 
et al.,  2021); however, data are scarce for juvenile leatherbacks 
in the Gulf of Mexico, or any ocean basin, because of their exclu-
sively offshore life history (Bolten,  2003). With similar sampling 
gaps for olive ridleys and flatbacks (Figure  3), collaboration with 
commercial and traditional fisheries (LaCasella et al., 2014; Lopez-
Mendilaharsu et al., 2019; Ng et al., 2014; Parker et al., 2005, 2011; 
Stewart et al., 2019) and local non-profit groups will facilitate sample 
collection.

Our results highlight the potential role of juvenile dispersal in 
introducing founder events and subsequent diversification, partic-
ularly for migratory species with natal philopatry like sea turtles. 
Continued in-water and rookery research projects across species, 
along with updated mixed stock analyses such as the current study, 
will further improve estimates of connectivity within and among 
life stages and ocean basins. In addition, standardized curation and 
cooperative management of haplotypes and other genetic data-
sets along with associated metadata are sorely needed. We urge 
fellow researchers to report long mtDNA fragment sequences, 
even if trimmed for MSA or other analyses for publication. We 
now have fully annotated leatherback and green turtle genomes 
(Bentley et al.,  2022) that can be used to develop genome-wide 
genetic datasets for many individuals, which will facilitate much 
more robust analyses of evolutionary history and population 
structuring. In the meantime, mtDNA data provide valuable insight 
into connectivity and patterns of diversification across habitats 
and life stages.
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APPENDIX 

F I G U R E  A 1 Maximum likelihood tree reconstructed in IQ-TREE.
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F I G U R E  A 2 Green turtle clades from the Bayesian gene tree analysis. Major clades labeled as defined by Jensen et al. (2019). The 
haplotypes from dispersal-stage juveniles we found in the Gulf of Mexico (n = 30) all fall within Clade I: Cm-A1.1, Cm-A3.1, Cm- A18.1, and 
Cm-A28.1, denoted by the turtle icons.
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F I G U R E  A 3 Loggerhead clades from the Bayesian gene tree analysis. Major clades labeled as defined by Shamblin et al. (2014). The 
haplotypes from dispersal-stage juveniles we found in the Gulf of Mexico (n = 2) fall within Clade IB: CcA1.1 and CcA4.1, denoted by the 
turtle icons.
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F I G U R E  A 4 Hawksbill clades from the global Bayesian gene tree analysis. Major clades labeled as defined by Arantes et al. (2020). 
Asterisks (*) denote haplotypes in a different clade in our analyses than previous studies (EiA89 previously in Clade Atlantic IIA, EiA42 
previously in Clade Atlantic IIB). The haplotype from dispersal-stage juveniles we found in the Gulf of Mexico (n = 3), EiA23, denoted by the 
turtle icon in Clade Atlantic IIB.
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F I G U R E  A 5 Olive ridley clades from the Bayesian gene tree.
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F I G U R E  A 6 Kemp's ridley portion of the Bayesian gene tree.
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F I G U R E  A 7 Flatback portion of the Bayesian gene tree.
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F I G U R E  A 8 Leatherback portion of the Bayesian gene tree.
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F I G U R E  A 9 Results of the strict clock Bayesian model with four fossil calibration points commonly cited in the literature: 
Dermochelyidae–Cheloniidae 100–150 Ma (Weems, 1988; Zangerl, 1980), Chelonini-Carrettini 50–75 Ma (Ernst & Barbour, 1989; 
Weems, 1988), Caretta–Lepidochelys 12–20 Ma (Carr & Marchand, 1942; Zangerl, 1980) and L. olivacae-L. kempii 4.5–5 Ma (Dodd & 
Morgan, 1992; Hendrickson, 1980).
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F I G U R E  A 1 0 Divergence time 
estimates from the current study (bold 
and italics) and comparable estimates 
from the literature. Grey text indicates 
estimates for topologies that differed.

Estimate Low 95% High 95% Reference
Marine turtles - outgroups  152.73 89.76 264.38 Current study

117.98 99.08 137.84 Current study (Fig A9) 
113.14  99.33 127.78 Joyce et al. 2013 
111.82 94.00 131.76 Thomson et al. 2021 
154.27 115.14 193.4 Naro-Maciel et al. 2008 
125 100 150 Duchene et al. 2012 
120.35 101.3 139.4 Vilaça et al. 2021 (mt) 
110.7 94.0 127.4 Vilaça et al. 2021 (nuc) 
119.5  99.1 140.6 Shaffer et al. 2017 

Dermochelyidae - Cheloniidae  89.34 53.98 154.03 Current study
75.68 65.35 86.62 Current study (Fig A9) 
66.18 50.22 82.94 Joyce et al. 2013 
59.73 48.40 76.57 Thomson et al. 2021 
108.05 97.18 118.91 Naro-Maciel et al. 2008 
102.63 100.00 111.58 Duchene et al. 2012 
57.9 46.1 69.7 Vilaça et al. 2021 (mt) 
76.5 65 88 Vilaça et al. 2021 (nuc) 
112.4 103.4 123.8 Arantes et al. 2020  
64.4 48.4  88.1 Shaffer et al. 2017 

Carettini - Chelonini 73.40 48.40 125.82 Current study
57.96 50.06 66.17 Current study (Fig A9) 
29.09 17.79 40.87 Thomson et al. 2021 
63.49 35.59 91.38 Naro-Maciel et al. 2008 
58.72 50.00 67.44 Duchene et al. 2012 
34.3 25.7 42.9 Vilaça et al. 2021 (mt) 
40.5 34.4 46.6 Vilaça et al. 2021 (nuc) 
65.9 52.2 80.4 Arantes et al. 2020  

Chelonia - Natator 46.46 27.28 80.91 Current study
36.21 29.62 43.01 Current study (Fig A9) 
36.43 21.92 52.51 Duchene et al. 2012 

C. mydas Atlantic - Pacific 13.14 7.28 22.97 Current study
9.95  7.82 12.21 Current study (Fig A9) 
3.09 1.76 4.87 Duchene et al. 2012 

Eretmochelys - Carretta/Lepidochelys 45.29 26.49 78.83 Current study
33.30 27.54 39.55 Current study (Fig A9) 
16.05  9.18 23.62 Thomson et al. 2021 
30.52 16.52 44.27 Naro-Maciel et al. 2008 
27.6 20.4 34.8 Vilaça et al. 2021 (mt) 
18.3 15.6 21.0 Vilaça et al. 2021 (nuc) 
25 16.6 33.8 Arantes et al. 2020  

Caretta - Lepidochelys 28.12 15.59 48.86 Current study
18.00 14.94 21.06 Current study (Fig A9) 
13.60 7.06 20.62 Thomson et al. 2021 
17.96 13.53 22.38 Naro-Maciel et al. 2008 
17.75 15.50 20.00 Duchene et al. 2012 
19.5 13.7 25.3 Vilaça et al. 2021 (mt) 
15.5 13 17.5 Vilaça et al. 2021 (nuc) 
21.6 13.7 29.8 Arantes et al. 2020  

Caretta IB - II/IA 9.84 5.16 17.34 Current study
7.13 5.32 8.99 Current study (Fig A9) 

Caretta FL - FL/HI/Pe 4.09 2.38 6.43 Duchene et al. 2012
Caretta II - IA 7.44 3.77 13.19 Current study

5.43  3.85 7.02 Current study (Fig A9) 
Caretta FL - HI/Pe 2.37 1.24 3.89 Duchene et al. 2012

Caretta II/IB/IA - IA 4.29 2 6.7 Arantes et al. 2020 
Caretta IB/IA - II 4.3 1.6 7.5 Shamblin et al. 2014

Caretta IB - IA  2.7 1.1 4.4 Shamblin et al. 2014
L. olivacea - L.kempii 12.41 6.50 21.68 Current study

4.88 4.62 5.13 Current study (Fig A9) 
4.84 4.56 5.00 Duchene et al. 2012 

L. olivacea Indian Ocean - others 5.14 2.46 9.13 Current study
2.76 2.13 3.43 Current study (Fig A9) 
2.71 2.40 3.36 Duchene et al. 2012 

L. olivacea EPac/Aus - others 3.37 1.66 6.02 Current study
2.11 1.59 2.67 Current study (Fig A9) 
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